Blue Balls
Randy Rockney, Anthony J. Alario;, Stuart A. Weinzimer, Paul S. Thornton;, Jonathan
M. Chalett and Lewis T. Nerenberg
Pediatrics 2001;108;1233-1234
DOI: 10.1542/peds.108.5.1233

The online version of this article, along with updated information and services, is
located on the World Wide Web at:
http://www.pediatrics.org/cgi/content/full/108/5/1233
Blue Balls

To the Editor.—

We read with great interest the case report and discussion on “blue balls.”1 We agree with the authors’ conclusions that “a greater awareness and discussion of this entity would benefit both physicians and their patients.” The condition described, what the urologists often term “epididymal hypertension,” and some have labeled “deadly sperm buildup” or “DSB,” has many other manifestations of which physicians and their caretakers ought to be aware. Other common presentations of this condition include an altered sensorium, thought to be the result of increased cerebrospinal fluid turbidity levels; and decreased visual acuity secondary to cloudiness of the fluid in the anterior chamber of the eye. The latter condition can be diagnosed by the finding of an anterior chamber meniscus.

In the discussion of treatment, however, we wonder whether the authors’ suggestion that “straining to move a very heavy object” is the first choice “simple maneuver [that] could bring immediate relief.” As this condition is coming to light in a highly respected pediatric journal, perhaps we should resurrect the advice of former Surgeon General Jocelyn Elders and teach masturbation in the schools. This novel idea, which led to her removal from office, should have been implemented yesterday.

In Reply.—

We thank Drs Rockney and Alario as well as Drs Weinzimer and Thornton for their insightful and amusing letters. It’s clear to us that blue balls really exists, and that it is a humorous as well as legitimate topic for medical discussion. The News Tribune of Tacoma published an article (October 2, 2000) about our case report and discussion that, like the letter-writers, balanced information and levity.

A 70-year-old retired college professor told us anecdotally that in Los Angeles public schools in the 1940s a practicing physician taught him and his fellow eighth-graders about sexuality, including “lover’s nuts.” The doctor told them that masturbation was at times a legitimate medical treatment. As Drs Rockney and Alario point out, Dr Jocelyn Elders lost her job for suggesting the same. Dr Dean Edell received numerous live phone calls on his national radio program after the October issue of Pediatrics was published and later interviewed Dr Chalett on the air. He too stressed the relevance of teaching ourselves and our patients as much about everyday issues (nutrition, stress, human sexuality) as we do about exotic and complicated diseases. He too was candid about how many complaints he would receive for even saying “masturbation” on the air, even if he did not advocate it.

Blue balls is real, yet the condition has been overlooked in the medical literature, adding unnecessary mystique and charge to a common condition. In no way should the pain of blue balls be an excuse to inappropriately advance a sexual relationship. As part of sexual education, we might teach that sexual urges are natural, abstinence is a real choice, and sexual decisions ought never to be based on coercion or exploitation.

We are not advocating any particular treatment method but are proposing education and communication. Sexual release will alleviate the pain of blue balls, but if a Valsalva maneuver offers pain relief, this option must also be taught so another nonsexual choice is available.

Drs Weinzimer and Thornton ask about appropriate billing setting? And if treatment is rendered, are there appropriate diagnostic and treatment codes for billing purposes?

We applaud the audacity of the authors to initiate a rational, scientific discussion on this subject that will, we fervently hope, put an end to this dreaded affliction. In the meantime, perhaps the old adage should be amended: “Abstinence makes the gems grow bluer.”

STUART A. WEINZIMER, MD
PAUL S. THORNTON, MB, BCH, MRCPI
Department of Pediatrics
University of Pennsylvania
Children’s Hospital of Philadelphia
Philadelphia, PA 19104

REFERENCE

To the Editor.—

We read with great interest the case report of acute testisculoscrotal pain after unsatisfied sexual arousal.1 The authors perform a great service for the field of adolescent medicine by exposing this condition for the true medical problem it is. Countless young men have, no doubt, suffered unnecessarily, as effective treatments are available. However, we believe that the report leaves some ambiguities unresolved:

1. The authors suggest that sexual release is an effective treatment. What are the ethical implications of such a statement? Will young men demand sexual satisfaction of their partners as essential medical therapy? Do the authors condone self-treatment? What about potential adverse effects of treatment, such as blindness and palmar hypertrichosis (personal communications, our mothers)?

2. What are the ethical and/or medical responsibilities for the health care team in treating young men in an urgent care setting? And if treatment is rendered, are there appropriate diagnostic and treatment codes for billing purposes?

We are not advocating any particular treatment method but are proposing education and communication. Sexual release will alleviate the pain of blue balls, but if a Valsalva maneuver offers pain relief, this option must also be taught so another nonsexual choice is available.

Drs Weinzimer and Thornton ask about appropriate billing
codes for diagnosis and treatment of this entity, and, of course, we must recommend code blue. They “fervently hope” for “an end to this dreaded condition”; about this we can offer assurance—blue balls is real, and a cure is coming.

Jonathan M. Challet, MD
Department of Pediatric Emergency Medicine
Mary Bridge Children’s Hospital
Tacoma, WA 98415

Lewis T. Neerenberg, MD
Department of Pediatrics
Permanente Medical Group
Kaiser South San Francisco
South San Francisco, CA 94080

Effect of Inhaled Corticosteroids on Growth

To the Editor—

I read with interest the meta-analysis of Sharek and Bergman regarding the effect of inhaled corticosteroids (ICS) on growth, and felt it was important to address 2 issues in response. First, the authors’ analysis of the growth effect seen during treatment with fluticasone propionate (FP) 200 µg/day indicated a small but statistically significant reduction in growth rate compared with placebo. This differs from the nonsignificant P value reported in our original paper, and an explanation for this discrepancy is required. Second, the conclusions arrived at by the authors are nevertheless weakened by a failure to review other growth studies in which FP was the active comparator. The result is a message that may be confusing to practitioners caring for children with asthma.

I would like to begin by addressing the different conclusion arrived at by Drs Sharek and Bergman regarding the effect on growth with FP 200 µg/day. As indicated in our study, we compared the effect of FP 100 µg/day and FP 200 µg/day with placebo in prepubescent children. The data for the children who remained prepubertal throughout the study were analyzed by analysis of variance (ANOVA) controlling for investigator. We reported a nonsignificant P value of .313, which supported our hypothesis that growth was not significantly impaired after 1-year treatment with FP 100 µg/day or 200 µg/day. I submit that Drs Sharek and Bergman most likely did not have the complete FP data available to them for their meta-analysis. Hence, it appears that the 95% confidence interval reported in their paper was calculated from the raw mean data that we reported along with the sample sizes obtained from Table 1 in our paper, which described the clinical characteristics of the prepubertal children at screening. The number of prepubertal children who actually completed the trial was less than that indicated by Table 1. The numbers of prepubertal children treated with placebo or FP 200 µg/day who completed the study were 57 and 79, respectively. The analysis in our paper used these smaller sample sizes and controlled for investigator interaction effects. Using the same basis for analysis, one would calculate a 95% confidence interval of (−0.86, 0.1). This confidence interval includes the zero value and supports the conclusion of our original paper. Not to use the smaller sample sizes increases the probability of committing a type 1 error. In addition, including a parameter (used in the model to calculate P values and confidence intervals) for “investigator interaction effects” controls for the potential of asthmatic children with a specific disease severity being recruited at some, but not all, sites. Likewise, as height is measured at each research site, with the data pooled among all sites, the investigator interaction parameter controls for potential inconsistency in stadiometric height measurements by the different study-site coordinators. In their analysis of the data, I do not believe that Drs Sharek and Bergman took this parameter into consideration. Furthermore, as indicated in our paper, we believe that mean change from the baseline growth velocity more accurately reflects the effects of inhaled steroids on growth. As such, we reported no effect of FP 200 µg/day on this parameter, with an overall P value of .380 by ANOVA; a pairwise comparison of the prepubertal children who completed the trial and received either placebo or FP 200 µg/day resulted in a P value of .223 with a 95% confidence interval of (−0.83, 0.25).

The robustness of the conclusions of Drs Sharek and Bergman with respect to FP is undermined by the paucity of the data presented. In their search strategy, the authors excluded trials with nonsteroid control arms. This eliminates head-to-head comparisons of ICS that provide the practitioner with relevant information regarding potential for adverse growth effects. Although active control studies could not be included in the meta-analysis based on the authors’ selection criteria, they could have been included in the discussion for comparative purposes. The studies of de Benedictis et al5 (FP vs beclomethasone), Ferguson et al6 (FP vs budesonide), and Price and colleagues7 (FP vs cromolyn) demonstrate that FP has significantly less effect on growth than beclomethasone or budesonide at clinically equivalent doses, and a similar effect when compared to cromolyn. This reduced effect of FP on growth could have been clearly illustrated in Figure 1 of the article, but the weighted mean difference (WMD) for FP 200 µg/day was inexplicably excluded from this figure.

When considering potential systemic effects of ICS, it is important to keep in perspective the relative benefits and risks of ICS therapy for asthma. The recently published prospective study by Agertoft and Pedersen8 demonstrated that the administration of inhaled budesonide to asthmatic children had no effect on these children attaining final adult height, which was similar to asthmatic children who did not receive inhaled steroids, as well as healthy children. Furthermore, Suissa et al9 recently showed that the regular use of low-dose ICS is associated with a decreased risk of death from asthma. In their study, the rate of death from asthma among users of ICS decreased by 21% for every additional canister used during the previous year and by 54% for every canister used in the previous 6 months. In both children and adults, the risk of systemic effects of ICS, already markedly reduced compared with oral corticosteroids, can be minimized by titrating to the lowest effective dose.

Although the methodology is admirable, the authors’ emphasis on meta-analytical technique obscures the central message of their manuscript. Many paragraphs describing statistical tests assure the reader that the proper route to a meta-analysis has been followed. However, the results do not allow for any generalization nor do they provide the medical professional with any clear sense of differences among ICS or differences among doses. Consequently, this meta-analysis does not fulfill its potential to enhance the full picture of ICS and their use in pediatric asthma.

David B. Allen, MD
Department of Pediatrics
Pediatric Endocrinology and Pediatric Residency Training
University of Wisconsin Children’s Hospital
Madison, WI 53792-4108

REFERENCES

3. de Benedictis FM, Medley HV, Williams L. Long-term study to compare safety and efficacy of fluticasone propionate (FP) with beclomethasone dipropionate (BDP) in asthmatic children. Eur Respir J. 1998;12(suppl); 142S

In Reply—

Thank you for the opportunity to reply to the letter to the editor by Dr Allen. Below, we address these concerns in the order presented by Dr Allen.

The first major concern expressed by Dr Allen is the difference in statistical significance we obtained for the randomized, controlled clinical trial of Allen et al included in our meta-analysis.2 As described in our work, we only included studies that provided the direct outcome of linear growth velocity or data convertible to linear growth velocity as an outcome. One purpose, and a major strength of the meta-analysis technique, is to combine similar data to provide a larger number of study participants yielding a more accurate estimate of effect size. This approach combines linear growth velocity (cm per year) data from each study included in the analysis. In Dr Allen’s study, the control and intervention groups were effectively randomized. Participants from each group were similar in demographics, clinical characteristics, concurrent asthma medications, oral steroid usage during the study, and compliance rates. The assumption that occurs in a randomized trial is that control and intervention subjects are similar with respect to unknown confounders as well. This assumption is valid if randomization was performed effectively. Given the method of randomization used, use of an off-site envelope, we believed this to be true. Data from Dr Allen’s study was thus directly abstracted and entered into the Review Manager Version 3.1 statistical package (Cochrane Collaboration, Oxford, England) used by the Cochrane Collaboration,2 revealing a significant difference between the participants using fluticasone propionate 200 µg/day and placebo. Efforts to contact the statistician involved in the Allen et al study to discuss some of these issues were unsuccessful.

Dr Allen is also concerned that we “most likely did not have the complete fluticasone propionate data available.” This is true, as many important study details were not provided in his article. We were able to estimate the number of participants remaining in the placebo control and fluticasone propionate 200 µg/day groups using the numbers presented and the text. The correct numbers of patients completed in the control group (57) and the fluticasone propionate group (79) were estimated from the text and used in our calculations. We were not able to control for “investigator interaction effects” as described. The technique of meta-analysis, if viewed as a trial whose subjects are the articles included, should balance out such parameters when the studies included are of large enough numbers. Clearly, because Dr Allen’s study was the only one evaluating fluticasone propionate that passed our strict inclusion/exclusion criteria, this assumption is not necessarily a safe one.

Dr Allen states “the robustness of the conclusions of Dr Sharek and Bergman with respect to [fluticasone propionate] is under mined by the paucity of the data presented.” We disagree. Regarding robustness, we clearly stated in the first paragraph of the discussion section: “Caution must be exercised when evaluating data regarding fluticasone, however, because only one study was incorporated and the magnitude of effect was smaller that that of beclomethasone.” In addition, we stated in the first paragraph of the conclusion section: “It would be inappropriate to judge the effect of moderate doses of inhaled fluticasone based on the 1 included study.” Regarding the paucity of data, our search strategy reviewed only one study that had the degree of scientific rigor we felt necessary to draw appropriate conclusions. Researchers who conduct meta-analysis believe one well-done study provides more valid conclusions than do many poorly done studies.

Dr Allen conveys disappointment in our disinterest in comparing 1 inhaled steroid to another to provide relevant information for potential for adverse growth effects. This, however, was beyond the scope of our meta-analysis. As described in the objective section of our abstract, we wished “to determine whether inhaled steroid therapy causes delayed linear growth in children with asthma.” Given the persistent uncertainty in the literature and in practice as to whether inhaled steroids do decrease linear growth, we felt it important to first attempt to answer this more basic question comparing an inhaled steroid to a nonsteroidal control. Contrary to Dr Allen, by this basic definition, all studies included in our meta-analysis were performed using the numbers presented and the text. The correct numbers of patients completed in the control group (57) and the fluticasone propionate group (79) were estimated from the text and used in our calculations. We were not able to control for “investigator interaction effects” as described. The technique of meta-analysis, if viewed as a trial whose subjects are the articles included, should balance out such parameters when the studies included are of large enough numbers. Clearly, because Dr Allen’s study was the only one evaluating fluticasone propionate that passed our strict inclusion/exclusion criteria, this assumption is not necessarily a safe one.

Dr Allen is also concerned that we “most likely did not have the complete fluticasone propionate data available.” This is true, as many important study details were not provided in his article. We were able to estimate the number of participants remaining in the placebo control and fluticasone propionate 200 µg/day groups using the numbers presented and the text. The correct numbers of patients completed in the control group (57) and the fluticasone propionate group (79) were estimated from the text and used in our calculations. We were not able to control for “investigator interaction effects” as described. The technique of meta-analysis, if viewed as a trial whose subjects are the articles included, should balance out such parameters when the studies included are of large enough numbers. Clearly, because Dr Allen’s study was the only one evaluating fluticasone propionate that passed our strict inclusion/exclusion criteria, this assumption is not necessarily a safe one.

Dr Allen states “the robustness of the conclusions of Dr Sharek and Bergman with respect to [fluticasone propionate] is undermined by the paucity of the data presented.” We disagree. Regarding robustness, we clearly stated in the first paragraph of the discussion section: “Caution must be exercised when evaluating data regarding fluticasone, however, because only one study was incorporated and the magnitude of effect was smaller that that of beclomethasone.” In addition, we stated in the first paragraph of the conclusion section: “It would be inappropriate to judge the effect of moderate doses of inhaled fluticasone based on the 1 included study.” Regarding the paucity of data, our search strategy reviewed only one study that had the degree of scientific rigor we felt necessary to draw appropriate conclusions. Researchers who conduct meta-analysis believe one well-done study provides more valid conclusions than do many poorly done studies.

Dr Allen conveys disappointment in our disinterest in comparing 1 inhaled steroid to another to provide relevant information for potential for adverse growth effects. This, however, was beyond the scope of our meta-analysis. As described in the objective section of our abstract, we wished “to determine whether inhaled steroid therapy causes delayed linear growth in children with asthma.” Given the persistent uncertainty in the literature and in practice as to whether inhaled steroids do decrease linear growth, we felt it important to first attempt to answer this more basic question comparing an inhaled steroid to a nonsteroidal control. Contrary to Dr Allen, by this basic definition, all studies included in our meta-analysis were performed using the numbers presented and the text. The correct numbers of patients completed in the control group (57) and the fluticasone propionate group (79) were estimated from the text and used in our calculations. We were not able to control for “investigator interaction effects” as described. The technique of meta-analysis, if viewed as a trial whose subjects are the articles included, should balance out such parameters when the studies included are of large enough numbers. Clearly, because Dr Allen’s study was the only one evaluating fluticasone propionate that passed our strict inclusion/exclusion criteria, this assumption is not necessarily a safe one.

Dr Allen states “the robustness of the conclusions of Dr Sharek and Bergman with respect to [fluticasone propionate] is undermined by the paucity of the data presented.” We disagree. Regarding robustness, we clearly stated in the first paragraph of the discussion section: “Caution must be exercised when evaluating data regarding fluticasone, however, because only one study was incorporated and the magnitude of effect was smaller that that of beclomethasone.” In addition, we stated in the first paragraph of the conclusion section: “It would be inappropriate to judge the effect of moderate doses of inhaled fluticasone based on the 1 included study.” Regarding the paucity of data, our search strategy reviewed only one study that had the degree of scientific rigor we felt necessary to draw appropriate conclusions. Researchers who conduct meta-analysis believe one well-done study provides more valid conclusions than do many poorly done studies.

Dr Allen conveys disappointment in our disinterest in comparing 1 inhaled steroid to another to provide relevant information for potential for adverse growth effects. This, however, was beyond the scope of our meta-analysis. As described in the objective section of our abstract, we wished “to determine whether inhaled steroid therapy causes delayed linear growth in children with asthma.” Given the persistent uncertainty in the literature and in practice as to whether inhaled steroids do decrease linear growth, we felt it important to first attempt to answer this more basic question comparing an inhaled steroid to a nonsteroidal control. Contrary to Dr Allen, by this basic definition, all studies included in our meta-analysis were performed using the numbers presented and the text. The correct numbers of patients completed in the control group (57) and the fluticasone propionate group (79) were estimated from the text and used in our calculations. We were not able to control for “investigator interaction effects” as described. The technique of meta-analysis, if viewed as a trial whose subjects are the articles included, should balance out such parameters when the studies included are of large enough numbers. Clearly, because Dr Allen’s study was the only one evaluating fluticasone propionate that passed our strict inclusion/exclusion criteria, this assumption is not necessarily a safe one.
Alternating Antipyretics: Is This an Alternative?

To the Editor.—

We read with interest the article by Mayoral et al.1 We would like to describe a case of acute renal failure that may add to the general discussion regarding alternating antipyretics. A 14-month-old previously healthy girl was admitted to Bryn Mawr Hospital for febrile status epilepticus. Initial laboratory studies revealed a normal head computed tomography scan, normal cerebrospinal fluid (CSF) studies, and negative bacterial cultures of the blood, urine, and CSF. Initial electrolytes were normal, and initial blood urea nitrogen (BUN) and creatinine were 16 mg/dL and 0.5 mg/dL, respectively. The patient received the following anticonvulsants: lorazepam, phenytoin, and phenobarbital. After initial control of the seizures, the patient was maintained on phenobarbital without additional seizure activity. The only other drug initially administered was ceftriaxone, which was continued for 72 hours pending negative bacterial cultures. The patient’s initial course was one of general improvement, but she continued to have fever. On hospital day 6 the patient spiked a temperature to 105.0, and additional evaluation was undertaken but was unrevealing. At this same time, given the height of the fever, the patient received an alternating regimen of acetaminophen and ibuprofen. The patient had some loose stools during this same interval, but did not receive parenteral fluids. On day 8 of hospitalization the patient had further laboratory evaluation that revealed a BUN of 63 mg/dL and creatinine of 3.4 mg/dL. The patient had an extensive renal evaluation, including a pediatric nephrology consultation, without discovering a definite cause for the acute renal failure. The patient had no features of hemolytic-uremic syndrome, systemic lupus, obstructive uropathy, or sickle cell disease. The patient was treated with careful medical management and she gradually recovered. She was discharged on hospital day 15 with a BUN of 15 mg/dL and creatinine of 0.9 mg/dL. She has gone on to have a full recovery. We believe that the acute renal failure was attributable to the additive and synergistic renal toxicities of acetaminophen and ibuprofen, in a patient who was moderately dehydrated. McIntire et al2 pointed out that acetaminophen and nonsteroidal anti-inflammatory drugs (NSAIDs) may cause renal failure synergistically by oxidative metabolites of acetaminophen accumulating in the renal medulla during renal isch- emia, which can be caused by NSAIDs. We would like to suggest an additional mechanism for toxicity from the combination of acetaminophen and ibuprofen. Eguia and Materson3 point out that acetaminophen inhibits urinary prostaglandin synthesis, just as NSAIDs do. Thus, you have an additive effect of this toxicity. In the normal participants, this decrease in prostaglandin synthesis does not seem to be clinically relevant, but in impaired individuals can lead to renal injury. We suggest that the synergistic and additive toxicities of acetaminophen and ibuprofen in a mildly to moderately dehydrated child can lead to acute renal failure. Although the clinical event of acute renal failure may be quite rare in the above circumstances, we believe it should be taken into account before prescribing the combination of these antipyretics.

Michael T. Del Vecchio, MD
Department of Pediatrics
Temple University Children’s Medical Center
Temple University School of Medicine
Philadelphia, PA 19140

Eric R. Sundel, MD
Department of Pediatrics
Bryn Mawr Hospital
Bryn Mawr, PA 19010

REFERENCES

To the Editor.—

In support of the recent article by Mayoral on “Alternating Antipyretics: Is This an Alternative?” I would add emphasis to their statement that:

“There is presently no scientific evidence that this combination [acetaminophen and ibuprofen] is safe or achieves faster antipyresis than either agent alone.” It has been postulated that they may even “act synergistically and produce tubular toxicity.”

Back in 1991, within a 2-year time frame after the approval of prescription ibuprofen for children in the United States, Robert J. Walker wrote in the article “Paracetamol [acetaminophen], Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Nephrotoxicity”2 as follows:

“Renal metabolism... is related to generation of non-toxic and toxic paracetamol metabolites... The accumulation of paracetamol in the medulla is important in the subsequent generation of chronic nephrotoxicity.”

“Under conditions... of intravascular volume depletion, paracetamol concentrations will increase in the inner medulla.”

“NSAIDs may have a synergistic effect with paracetamol in producing cell toxicity by the reduction in renal blood flow particularly into the medulla. The reduced oxygen gradient that already exists in the renal medulla would be further compromised and hence increase the risk of cellular damage. These potential interactions await experimental confirmation.”

Subsequently, in 1993 McIntire and colleagues3 from Children’s Hospital of Pittsburgh reported that:

...concomitant acetaminophen use [with an NSAID] was present in both cases and its role is more problematic. Acetaminophen accumulates in the renal medulla... Oxidative metabolites of acetaminophen can result in medullary cellular necrosis in the absence of reduced glutathione, the production of which is inhibited by agents that inhibit renal prostaglandin synthesis.”

“Thus, the tubular toxicity of NSAIDs and acetaminophen are, at least theoretically, synergistic... The practice of alternating doses of acetaminophen and NSAIDs for fever control theoretically increases the risk of nephrotoxicity.”

In view of the preceding comments and observations, it appears prudent to avoid alternating or simultaneous administration of acetaminophen with ibuprofen. Engaging in wishful thinking may tempt possibly synergistic adverse events. The individual utility of ibuprofen or of acetaminophen, separately, for fever control and associated improved comfort of children, is well-known. The safety record of each is a matter of record, and I would refer colleagues to my letter on ibuprofen safety published in Pediatrics in January 1992.4 Alternating or combining the two medications is not recommended.

Jonathan B. Rosefsky, MD, FAAP
Havenford, PA 19041

REFERENCES

1236 LETTERS TO THE EDITOR
Downloaded from www.pediatrics.org at Swets Blackwell 75204703 on October 1, 2007
We welcome Dr. Rosefsky’s support of our admonition against the use of combination therapy for the management of fever in children. Despite the lack of scientific knowledge regarding the use of acetaminophen and ibuprofen in combination or in an alternating regime, physicians have not been dissuaded from practicing this method of antipyresis.

Acetaminophen and ibuprofen act via similar mechanism: they both inhibit cyclooxygenase activity and therefore the formation and release of prostaglandin. In certain settings, such as hypovolemia, inhibition of prostaglandin synthesis may impair renal perfusion. McIntire et al present two cases where patients developed acute flank pain and reversible renal dysfunction after use of nonsteroidal anti-inflammatory agents. In both cases, acetaminophen was also ingested. McIntire suggests that in states of renal ischemia, acetaminophen metabolites may accumulate in the renal medulla and lead to medullary cellular necrosis. Theoretically these two products may act synergistically and cause tubular toxicity.

Dr. Del Vecchio and Dr. Sundel provide the first documentation of acute renal failure in a patient who also received combination therapy for fever management. This example adds support to our concerns about the safety of this method of antipyresis. There is presently no scientific evidence that the use of this combination achieves faster antipyresis or has greater efficacy than either agent used alone. Because of the lack of evidence regarding the safety of this combination and until properly controlled studies have assessed the risk of combining or alternating these 2 products, we believe it would be prudent for physicians to advise parents to use one single agent during the management of the febrile child.

CLARA E. MAYORAL, MD
General Pediatrics
South Nassau Communities Hospital
Oceanside, NY 11570

WARREN ROSENFELD, MD
RONALD V. MARINO, DO
JOSEPH GREENSHIER, MD
Department of Pediatrics
Winthrop University Hospital
Mineola, NY 11501

REFERENCES

Distinguishing SIDS From Child Abuse Fatalities

To the Editor.—

Currently, nearly 3000 children die each year in the United States from sudden infant death syndrome (SIDS). It is therefore important for health care providers to understand this clinical entity and know how to differentiate it from other conditions, including child abuse. The recent position statement from the AAP’s Committee on Child Abuse and Neglect updates a previous position statement by this committee on this topic. Although the committee’s recommendations are laudable, they now advocate for “examination of the dead infant at a hospital emergency department by a child maltreatment specialist” but do not specify what qualifications a “child maltreatment specialist” must hold. The American Board of Pediatrics does not offer a subspecialty certificate in child abuse (W. W. Tunneness, Jr, Senior Vice President, American Board of Pediatrics, personal communication, April 2001). The committee should explain and qualify its statement.

Raymond E. Brady, MD
Portland, OR 97209-2696

REFERENCES

Inadequate Internet Resources Cited

To the Editor.—

We applaud the American Academy of Pediatrics for recognizing the need for, and publishing, their guidelines on counseling families about using complementary and alternative medicine (CAM) for their children. Your stated goals of advising pediatricians to evaluate the scientific merits of CAM approaches, identify potential risks, and provide families with information on a range of treatment options are laudable. However, we believe you fail short in your additional call to “guard against bias” in your choices of “Helpful Resources on the Internet” in Appendix I.

Unfortunately, the otherwise excellent information on the Uni-
Apparenty Severe Late-Onset Neutropenia in Two Very Low Birth Weight Infants

To the Editor.—

In 2000, Omar et al reported for the first time late-onset neutropenia in very low birth weight (VLBW) infants. The authors showed an incidence rate of late-onset neutropenia (defined as absolute neutrophil count lower than 1500/mm³ after 3 weeks of life) as high as 22%. The average nadir of the neutrophil in the neutropenic infants was 1067/mm³. Severe late-onset neutropenia has to our knowledge not yet been described.

We report 2 cases of premature infants who developed apparently severe late-onset neutropenia.

Case 1 was born at 29 weeks of a bichorial biamniotic pregnancy (birth weight = 1285 g). The child required artificial ventilation for 2 days and had by then a normal evolution. She received rHuEpo 3 times a week (250 IU/kg) from day 7 to day 40. However, the child required transfusion on day 69. On day 69, a complete blood count performed before the transfusion showed an absolute neutrophil blood count of 423/mm³. White blood cells were 4700/mm³, hemoglobin 8.5 mg/dL, and platelet count 333 000/mm³. The child was asymptomatic and, as no specific cause was found, no specific treatment was performed. A blood count performed on day 76 showed an absolute neutrophil blood count of 44/mm³.

Case 2 was born at 28 weeks (birth weight = 1280 g) after having developed chronic intratranier transfusion syndrome that caused the intratranier death of her twin. She required artificial ventilation for 4 days and had by then a normal evolution. She received rHuEpo 3 times a week (250 IU/kg) from day 7 to day 39. She developed a progressive neutropenia with a nadir of 532/mm³ on day 69. Hemoglobin was then 9.2 g/dL and blood platelets 353 000/mm³. The absolute neutrophil blood count slowly increased and the child was discharged on day 75. On day 82, the neutrophil blood count was 1350/mm³. By then, she had a normal evolution.

Our patients developed late-onset neutropenia as defined by Omar et al, but we think that the decreasing absolute neutrophil blood count could have been worsened by the rHuEpo administration, as reported by Latini et al for non-neutropenic infants. However, the dose of rHuEpo received by our patient was lower than the ones who developed neutropenia in the report of Latini et al (750 IU/kg/week vs 1200 IU/kg/week) and was given 3 times a week rather than 1 time a week.

Omar et al recommend avoiding institution of aggressive therapy such as granulocyte colony-stimulating factor (G-CSF) for late-onset neutropenia. However, Christensen et al recommend G-CSF when the absolute neutrophil count is below 500/mm³ for 2 or 3 days, regardless of the cause.

We believe that additional reports and studies are required before recommending aggressive and expensive therapy of late-onset neutropenia, even when the absolute neutrophil blood count is around 500/mm³.

REFERENCES

In Reply.—

I appreciate the opportunity to respond to the letter from Servais et al regarding apparently severe late-onset neutropenia in VLBW infants. The incidence of late-onset neutropenia in our study was 22% (51/225 infants), and the nadir absolute neutrophil count (ANC) in the neutropenic infants was 1067 ± 44/mm³. Apparently severe late-onset neutropenia, defined as ANC <750/mm³, was detected in 10 of the infants in our study (4.4%). The mean gestational age of infants with apparently severe late-onset neutropenia was 28 ± 1 weeks (range: 25–32 weeks), and mean birth weight was 1056 ± 96 g (range: 726–1430 g). The nadir ANC was 577 ± 43/mm³ (range: 279–720/mm³) with a concomitant hemoglobin of 9.8 ± 0.4 g/dL (range: 6.7–11.1 g/dL), reticulocyte count of 7.5% ± 1.6% (range: 4.2%–14.6%), and platelet count of 339 ± 38 × 10³/mm³ (range: 139–497 × 10³/mm³). The mean ANC subsequent to the nadir ANC was 1901 ± 351/mm³ (range: 1044–3180/mm³). The mean postnatal age at onset was 6 ± 1 weeks (range: 4–10 weeks). This apparently severe late-onset neutropenia was transient and lasted for 1 week in 9 infants and 2 weeks in 1 infant. The lowest ANC of 294 and 444/mm³ were detected in 2 infants with subsequent increase of ANC to 1125 and 1776/mm³, respectively. All 10 infants with apparently severe late-onset neutropenia were stable, growing in full oral feeding. In contrast to the 2 infants reported by Servais et al, none of the infants in our study received erythropoietin. Late-onset neutropenia is a phenomenon that occurs in VLBW infants with anemia of prematurity and marked reticulocytosis. It seems that neutropenia detected in premature infants treated with erythropoietin has a similar mechanism and is secondary to marked reticulocytosis rather than to erythropoietin therapy. We agree with Servais et al and continue to recommend avoiding aggressive and expensive therapy.
such as G-CSF for late-onset neutropenia, even when ANC is around 500/mm³. Additional studies are needed to examine the incidence of nosocomial infection in stable, growing VLBW infants with late-onset neutropenia. In contrast, G-CSF may be a reasonable therapy for VLBW infants with persistent early-onset neutropenia during the first 3 weeks of life. VLBW infants with early-onset neutropenia are usually sick with multiple foreign bodies, such as central lines, peripheral intravenous lines, and endotracheal tubes, which increase their susceptibility to sepsis. Multiple studies have shown a possible beneficial effect of G-CSF in premature infants with early-onset neutropenia.¹⁻⁸

Said A. Omar, MD
Alaa Salhada, MD
Diane E. Wooliever, NNP
Patricia K. Alsagaard, NNP
Department of Pediatrics and Human Development
Michigan State University
Sparrow Health System
Division of Neonatology
Lansing, MI 48909

REFERENCES
5. Kocherlakota P, La Gamma EF. Human granulocyte colony-stimulating factor may improve outcome attributable to neonatal sepsis complicated by neutropenia. Pediatrics. 1997;100(1). Available at: http://www.pediatrics.org/cgi/content/full/100/1/e6

Surprised by Publication

To the Editor.—

Before the 20th century, most infants slept in a bed with their parents. An infant who was suddenly and unexpectedly found dead in such an environment was presumed to have been over- lain. More recently, with lack of evidence after a thorough post-mortem investigation (autopsy), these deaths have been diagnosed as unexplained or sudden infant death syndrome (SIDS). According to the conclusions of Carroll-Pankhurst and Mortimer,¹ we have apparently come full circle and should attribute the sleeping deaths on a sofa have been included in the analysis and the contribution of known SIDS risk factors (eg, sleeping position, heavy wrapping, etc) have been ignored is tantamount to the same presumptions made a century earlier.

Peter S. Blair, PhD
Peter Fleming, MD, PhD, FRCP, FRCPCH
Royal Hospital for Children
Bristol BS2 8BJ, United Kingdom

Helén L. Ball, PhD
Parent-Infant Sleep Lab, Department of Anthropology
University of Durham
Durham DH1 3HN, United Kingdom

Martin W. Platt, MD, FRCP, FRCPCH
Newcastle Neonatal Service, Ward 35
Royal Victoria Infirmary
Newcastle upon Tyne NE1 4LP, United Kingdom

REFERENCES
2. Ball HL, Hooker E, Kelly PJ. Where will the baby sleep? Attitudes and practices of new and experienced parents regarding co-sleeping with their newborn infants. Am Anthropol. 1999;101:143–151
In Reply.—

We appreciate the comments of Blair et al but must disagree with some of them. Our report repeatedly states that we believe bed-sharing to be a cause of only a portion of SIDS-like deaths, and therefore we have not gone full circle as they contend. Rather, our position calls for a compromise between the all-or-none position that have characterized this debate in the past. If it is correct that our observation explains some undetermined number of such deaths, it may help investigators separate explainable causes from true idiopathic SIDS.

As to the absence of true controls, there have been many classic descriptive epidemiologic studies that demonstrate association and/or causation that did not include controls in the usual sense. Among these are the Framingham studies of precursors of adult cardiovascular disease, the longitudinal British studies of birth cohorts, and the well-known Cleveland family studies. Moreover, each of these developed hypotheses and tested them from the same data.

In relation to the comment about the paucity of SIDS in the first month of life when bed-sharing is most frequent, we do not know the prevalence of that sleeping practice with young infants in Cleveland. Further, if this concern is valid, should it not apply to the prone versus supine problem as well?

We did not suggest that the report of Blair et al suffered from underascertainment; instead, we were concerned about the criteria for explained deaths. Their subsequent report indicates that our concern was unfounded.

Finally, we believe that the bimodal peak age distribution of SIDS (8 weeks for bed-sharers and 15 weeks for crib sleepers) demonstrated in the British studies supports our concern about co-sleeping. Their implication that this distribution might well explain our results ignores the maternal weight finding. As we stated in our report, each of the factors (bed-sharing, age at death, and maternal weight) is meaningless when considered individually. What is important is the combination of the 3 factors, which led to our conclusion and from which we are not dissuaded. The fact that the significance of this difference disappears when the British data are adjusted for fatigue and alcohol use by the bed-sharing adult, overcrowding in the household, and duvet use does not invalidate this finding. The first 3 characteristics are not risk factors for SIDS, but instead may increase the likelihood of bed-sharing. A basic principle of multivariate analysis in epidemiology is that adjustments for potential confounders are made only for other known risk factors.

In short, we believe that the major criticisms of our data and our conclusions are in error. Additionally, we believe that the risk of bed-sharing is demonstrated in the British studies as well.

In response to Lawrence’s questions on breastfeeding, bed-sharing, and SIDS, we would note that we do not have prevalence data for the Cleveland population. We have evaluated intent to breastfeed at hospital discharge in our data and found no significant difference between those who were bed-sharing and those who were not (20% vs 17%, respectively). We would also point out that the AAP Task Force on Infant Sleep Position and SIDS, in its most recent assessment of factors thought to protect against SIDS, concluded that although there were contradictory reports, the current evidence was insufficient to conclude that breastfeeding was protective for SIDS.

REFERENCES

ERRATUM

Some errors occurred in the article entitled “The Timing of Neonatal Discharge: An Example of Unwarranted Variation,” which appeared in the January 2001 issue of Pediatrics. The corrections are as follows:

1. Michael S. Kornhauser’s title should have read: Medical Director, Paidos Health Management Services, Inc, Deerfield, IL, and Department of Pediatrics, Jefferson Medical College, Philadelphia, PA.

2. David B. Nash’s title should have read: Office of Health Policy and Clinical Outcomes and Department of Medicine, Jefferson Medical College, Philadelphia, PA.

3. This research was supported in part by a grant from Paidos Health Management Services, Inc awarded to Suzanne M. Touch, MD, and Jay S. Greenspan, MD.
Blue Balls
Randy Rockney, Anthony J. Alario;, Stuart A. Weinzimer, Paul S. Thornton;, Jonathan M. Chalett and Lewis T. Nerenberg
Pediatrics 2001;108;1233-1234
DOI: 10.1542/peds.108.5.1233

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high-resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Publication Peer Reviews (P³Rs)</td>
<td>One P³R has been posted to this article:</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
</tbody>
</table>

http://www.pediatrics.org/cgi/content/full/108/5/1233
http://www.pediatrics.org/cgi/eletters/108/5/1233
http://www.pediatrics.org/misc/Permissions.shtml
http://www.pediatrics.org/misc/reprints.shtml